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Abstract
We consider the double mathematical pendulum in the limit when the ratio of
pendulum masses is close to zero and the ratio of pendulum lengths is close to
infinity. We found that the limit system has a hyperbolic periodic trajectory,
whose invariant manifolds intersect transversally and the intersections are
exponentially small. In this case we obtain an asymptotic formula of the
homoclinic invariant for the limit system.

PACS numbers: 45.20Jj, 02.30.Hq, 05.45.−a

1. Introduction

In this paper we continue the investigation of the double mathematical pendulum started in
[9]. The double mathematical pendulum is a classical example of a Hamiltonian system with
two degrees of freedom. It consists of two masses m1 andm2 attached to consequently joined
arms of lengths l1 and l2, respectively, the upper end of the first arm being fixed, and the whole
system being subjected to the action of the constant gravity acceleration, g. We take the angles
φ1 and φ2 of deviation of the arms from the vertical axis as the coordinates and define new
parameters of the system δ, ε, ν in the same manner as in [9]:

δ = m2

m1
ε = l2

l1
ν =

√
E

2m1gl1

where E is the energy of the system.
The kinetic energy and the potential energy are of the form

T = 1
2 (1 + δ)φ̇2

1 + 1
2δε

2φ̇2
2 + δε cos(φ1 − φ2)φ̇1φ̇2

U = (1 + δ)(1 − cosφ1) + δε(1 − cosφ2).
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Using the Hamiltonian formalism, we introduce the generalized momenta pi = ∂L
∂φi

,
i = 1, 2, where L = T − U is the Lagrangian of the system

p1 = (1 + δ)φ̇1 + δε cos(φ1 −φ2)φ̇2
(1.1)

p2 = δε2φ̇2 + δε cos(φ1 − φ2)φ̇1.

Then the double mathematical pendulum is described by the Hamilton equations

φ̇i = ∂H

∂pi
ṗi = −∂H

∂φi
i = 1, 2 (1.2)

with the Hamiltonian H:

H = 1

2
(
1 + δ sin2(φ1 − φ2)

) (p2
1 − 2

p1p2 cos(φ1 − φ2)

ε
+
p2

2(1 + δ)

δε2

)
+ (1 + δ)(1 − cosφ1) + δε(1 − cosφ2). (1.3)

Since the system (1.2) is conservative, the motion occurs on the energy surface

H(φ1, φ2, p1, p2; δ, ε) = 2ν2

and the value of the relative energy ν is treated as an additional parameter.
Thus, the system (1.2) is considered to be depending on three parameters. The space

of natural parameters (δ, ε, ν) is R
3
+, where R+ = (0,+∞), and it is noncompact. Let us

compactify it by adding limit values {0,+∞} to each copy of R+. So we can consider
topologically this compactified parameters space as a cube.

As it was mentioned earlier the double mathematical pendulum had been investigated by
the author in [9]. In that paper we studied numerically the system in terms of the Poincaré
sections. The numerical method applied in that investigation consists of several steps. The
first one is the finding of hyperbolic periodic points for the Poincaré map. The approximate
positions of some hyperbolic periodic points were obtained visually from the pictures of
the phase portrait (figure 1), and their precise coordinates were calculated by use of the Newton
method. The second step of the method is the construction of separatrices. The pictures of the
corresponding stable and unstable manifolds were drawn. By using the Tailor expansion near
the hyperbolic points we obtained approximations of the separatrices in small neighbourhoods
of that points (figure 2). After that we continue with them out of the neighbourhoods by
applying the Poincaré map. The last step is to prove the existence of homoclinic transversal
intersections. Comparing the constructed separatrices, positions of some homoclinic points
and their homoclinic invariants were calculated. From the nonnullity of the homoclinic
invariant followed the nonintegrability of the system. We applied this scheme to three chosen
sets of system parameters and values of the energy and proved the nonintegrability of the
system for these values.

It is to be noted that we used a modified definition of the nonintegrability because of the
energy was considered as an additional parameter. More precisely, the system is said to be
integrable for the given values of the parameters δ, ε, ν if there exists a neighbourhood of the
energy surface H−1(ν), where there are two independent integrals of motion. Otherwise it is
called nonintegrable for δ, ε, ν.

From the data obtained in numerical experiments we stated [9], the main conjecture is
that the double mathematical pendulum is nonintegrable for all nontrivial (not equal to zero
or infinity) values of the parameters.

To justify this conjecture we suggest to prove that the system has on every energy
level H−1(ν) and for any values of two other parameters a hyperbolic periodic trajectory,
whose separatrices intersect transversally. The method proposed in [9] gives an instrument
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Figure 1. The Poincaré section, corresponding to (δ = 0.01, ε = √
5, ν = 1.16).

for proving the nonintegrability of the system for some fixed (δ, ε, ν). But as it follows
from the stability of hyperbolic objects under small perturbations [12], if the system (1.2)
is nonintegrable for some (δ0, ε0, ν0), there is a neighbourhood of this point in the space
of parameters where the system is nonintegrable too. If the space of parameters were
compact, we would try to cover it by a finite number of such neighbourhoods, where
(1.2) is nonintegrable. But it is not so. That is why we have to apply asymptotic
methods to investigate the system in the limit when the values of the parameters are
close to the limit ones. Thus, a strategy of proving the conjecture can be based on the
idea of combination of asymptotic and numerical methods. By using different asymptotic
techniques we try to pick up a vicinity of the parameters space boundary, where the
transversal homoclinic intersections exist. Then one should divide the supplement of
the vicinity by a finite number of domains, where it is possible to apply the numerical
procedure.

In some sense the limit parameters correspond to the degenerate motion of the system
(1.2) and seemed to the author to be ‘integrable’, since the Hamiltonian H associated with
these parameters describes an integrable system. In this paper we begin this investigation
with the limit case δ → 0, ε → ∞ and find that the limit system is nonintegrable. Moreover,
we prove that for any value of the energy such that ν 	= 1 the limit system has a hyperbolic
periodic trajectory, whose invariant manifolds intersect transversally and the intersections are
exponentially small.

We shall use the homoclinic invariant as a measure for separatrices splitting (see figure 2).
It was introduced in [10] for area-preserving mappings. Let us modify it to
be applied in our situation. Assume that an analytic Hamiltonian system with
two degrees of freedom H(φ1, φ2, p1, p2) has a hyperbolic periodic orbit ζper(t) =(
φ
per

1 (t), φ
per

2 (t), p
per

1 (t), p
per

2 (t)
)

of period T, which possesses two-dimensional stable
Ws(ζper) and unstable Wu(ζper) manifolds. It follows from the normal form theory that
these manifolds can be represented in a parameteric form

φi = φ
u,s
i (t1, t2) pi = p

u,s
i (t1, t2) i = 1, 2

such that



11014 A V Ivanov

-3

-2

-1

0

1

2

3

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

homoclinic
point

Figure 2. The splitting of separatrices, corresponding to (δ = 0.01, ε = √
5, ν = 1.16).

1. the parametrizing functions are analytic, T-periodic in t2;

2. for any constant t0 the function

ζ(t) = (
φ
u,s
1 (t + t0, t), φ

u,s
2 (t + t0, t), p

u,s
1 (t + t0, t), p

u,s
2 (t + t0, t)

)
represents a trajectory of the system;

3. ζ u,s(t1, t2) → ζper(t2) as t1 → ∓∞,where ζ u,s(t1, t2) = (
φ
u,s
1 (t1, t2), φ

u,s
2 (t1, t2),

p
u,s
1 (t1, t2), p

u,s
2 (t1, t2)

)
The variables t1, t2 on the manifolds are defined uniquely up to an additive constant. This

enables us to define in an invariant manner the tangent vector at a point ζ ∈ Wu(orWs).
If ζ = ζ u,s(t1, t2), we set

�eu,s(ζ ) = ∂
∂t1
ζ u,s(t1, t2).

Denote the phase space of the system by M and the symplectic structure by �

� =
2∑
i=1

dφi ∧ dpi.

Let us assume that the invariant manifolds of the orbit ζper intersect along a homoclinic
trajectory ζh(t). The homoclinic invariant of the homoclinic trajectory ζh is

ω(ζh) = �(�eu(ζh(t ′), �es (ζh(t ′)). (1.4)

The right-hand part of (1.4) is invariant with respect to the Hamiltonian flow associated
with the system. So it is the same for all points of ζh, i.e. it does not depend on t ′.

If we impose on M a Riemannian metric, then that metric induces a norm on vectors
and the notion of an angle between vectors makes sense. If ζh(t ′) is a homoclinic point of a
homoclinic trajectory ζh then the angle α between the tangent vectors toWu andWs at ζh(t ′)
can be calculated in terms of the homoclinic invariant as

sinα = ω(ζh)

||�eu(ζh(t ′))|| ||�es(ζh(t ′))|| .

Here || · || stands for the norm of a vector.
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To investigate the double mathematical pendulum in the limit δ → 0 we seek a solution
of (1.2) in the form

φ1(t; δ, ε, ν) =
∞∑
k=0

φ1,k(t; ε, ν)δk p1(t; δ, ε, ν) =
∞∑
k=0

p1,k(t; ε, ν)δk

(1.5)

φ2(t; δ, ε, ν) =
∞∑
k=0

φ2,k(t; ε, ν)δk p2(t; δ, ε, ν) =
∞∑
k=1

p2,k(t; ε, ν)δk.

It follows from (1.1) that p2,0 ≡ 0. Substituting (1.5) into (1.2) and gathering the
terms with the same order of δ, we obtain a recurrent system of differential equations for the
coefficients in (1.5). The system of equations, corresponding to the zero order of δ, is

φ̇1,0 = p1,0

ṗ1,0 = − sinφ1,0
(1.6)

φ̇2,0 = p2,1

ε2
− p1,0 cos(φ1,0 − φ2,0)

ε

ṗ2,1 = p1,0p2,1 sin(φ1,0 − φ2,0)

ε
− sin(2(φ1,0 − φ2,0))

2
− ε sin φ2,0.

The first two equations of (1.6) are the ‘pendulum equations’ and their solution is

φ1,0(t) =




2 arctg

(
ν

sn(t − t0, ν)
dn(t − t0, ν)

)
ν < 1

2 arctg(sinh(t − t0)) or π, ν = 1

2 arctg

(
sn
(
ν(t − t0), ν−1

)
cn
(
ν(t − t0), ν−1

)
)

ν > 1

(1.7)

where sn(x, k), cn(x, k), dn(x, k) are the Jacobi functions of module k and t0 is an arbitrary
constant.

By elimination of p2,1 from the third and fourth equations of (1.6), we obtain the second-
order differential equation on φ2,0:

φ̈2,0 = − 1
ε

(
3 cosφ1,0 + 4ν2 − 2

)
sin(φ2,0 − φ1,0) . (1.8)

Since the parameter ε is big we introduce a new small parameter ρ = 1√
ε
, which is more

convenient in this case. Besides, we change the time variable t → ρt . Then the equation (1.8)
is equivalent to the system of Hamilton equations

ẋ = ∂G

∂y
ẏ = −∂G

∂x
(1.9)

with the Hamiltonian G:

G = y2

2
−'ν

(
t

ρ

)
cos

(
x − φν

(
t

ρ

))

'ν(τ) =




6 dn2(τ, ν) + 4ν2 − 5 ν < 1

6 cosh−2(τ )− 1 or −1 ν = 1

6 cn2(τ, ν) + 4ν2 − 5 ν > 1
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φν(τ ) =




2 arctg

(
ν

sn(τ, ν)

dn(τ, ν)

)
ν < 1

2 arctg(sinh(τ )) or π ν = 1

2 arctg

(
sn(ντ, ν−1)

cn(ντ, ν−1)

)
ν > 1.

(1.10)

Further, we consider the Hamiltonian system described by the equations (1.9) as an
independent dynamical system with one and a half degrees of freedom and suppose that the
parameter ρ is close to zero. In this case we study the system (1.9), find a hyperbolic periodic
trajectory (xper(t), yper (t)), investigate separatrices splitting of this trajectory and prove an
exponentially small asymptotic expression for the homoclinic invariant.

From these results and from the stability of hyperbolic objects under small perturbation
follows:

Main theorem. For any ν 	= 1 there is a positive number ε0(ν) such that for any ε > ε0(ν)

there exists δ0(ε, ν) > 0 such that for 0 < δ < δ0(ε, ν) the system (1.2) has a periodic
hyperbolic trajectory

(
φ
per

1 , φ
per

2 , p
per

1 , p
per

2

)
(t). The first two components of this trajectory

are close to the solution of the ‘pendulum’ equation (1.7) and to the periodic solution xper(t)
of the system (1.9), respectively. Moreover, the invariant manifolds associated with this
trajectory intersect transversally and the intersections are exponential small with respect to
the parameter ε, i.e. they are of the order of O(e−const·

√
ε).

Remark 1. We note that the value of the parameter δ0(ε, ν) is very small. More precisely it
is exponentially small because of the exponentially smallness of the homoclinic intersections.
Thus, we prove the nonintegrability of the double mathematical pendulum for very narrow
neighbourhood of the edge (δ = 0, ε = ∞) in the space of parameters.

Remark 2. As it follows from (1.7) the first two equations (1.6) have two solutions in the case
ν = 1. One of them φ1,0 = π , p1,0 = 0 is an unstable equilibrium. It is easy to show that the
corresponding Hamiltonian of the system (1.9) is of the form

G(x, y) = y2

2
− cos x

and this system has the same unstable equilibrium: x = π, y = 0. Hence the system (1.6)
has the unstable equilibrium φ1,0 = π, p1,0 = 0, φ2,0 = π, p2,1 = 0, which possesses the
homoclinic trajectory φh1,0 = π, ph1,0 = 0, φh2,0 = 2 arctg(sinh(t)), ph2,1 = 2/cosh t . One can
prove (see, e.g. [12]) that under small perturbation in δ the system (1.2) has a hyperbolic
periodic orbit in a δ-neighbourhood of this equilibrium and its local stable and unstable
manifolds are close to the mentioned homoclinic trajectory. The Poincaré–Arnold–Melnikov
method predicts that the splitting of these manifolds is of the order O(δ). But the accurate
asymptotic has not been obtained yet.

2. Asymptotic method

As it was mentioned the aim of the present paper is to establish the transversality of separatrices
of the system (1.9) for small ρ. The standard way to study the splitting of separatrices is the
Poincaré–Arnold–Melnikov method. It is usually applied to Hamiltonian systems of the form

K(x, y, t, α) = K0(x, y) + αK1(x, y, t)

whereα is a small parameter andK1 is a periodic in t. It is assumed that the unperturbed system
has an unstable equilibrium ζ0 = (x0, y0) and a homoclinic trajectory ζh(t) = (xh(t), yh(t)).
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Then the complete system has a hyperbolic periodic orbit in a α-neighbourhood of the
equilibrium and the local stable and unstable manifolds associated with this periodic orbit
are close to the separatrix ζh of the unperturbed system. In general these manifolds intersect
transversally. One can take the unperturbed energyK0(x, y) as a coordinate near the separatrix
ζh(t). Then the distance between the stable and unstable manifolds, when they reach a
α-neighbourhood of a point ζh(t0) for the first time, is equal to αM(t0) + O(α2), where M is
the Melnikov function

M(t0) =
∫ ∞

−∞
{K0,K1}|ζ(t0+t),t d t

where {· , ·} denotes the Poisson brackets.
If the Hamiltonian K depends on an additional parameter β, the Melnikov function may

also depend on β. In particular, if the period of the perturbation K1 is of the order of β, the
Melnikov function is exponentially small with respect to β. In this case the standard Melnikov
theory allows to prove the existence of the splitting for α exponentially small only.

In fact, it was established that the application of Poincaré–Arnold–Melnikov theory
provides a correct prediction (but not justification) for separatrix splitting for a system with
sufficiently small amplitude of perturbation. In particularly, in [5] sufficient conditions
for validity of the Melnikov method were obtained in the case of weak high-frequency
perturbations, that is for Hamiltonians

K(x, y, t/β; α, β) = K0(x, y) + αK1(x, y, t/β; α, β) (2.1)

where |α| < α0β
p, p > p0 and α, p, p0 are constants.

Since the system (1.9) depends on the fast time, the splitting is exponentially small with
respect to ρ [13] and cannot be detected by the classical perturbation theory. Making a time-
dependent shift (x, y) �→ (

x − ϕν(t/ρ), y − ρ−1ϕ′
ν(t/ρ)

)
the Hamiltonian G can be rewritten

in the form similar to (2.1) with p = −2:

G = y2

2
− a0 cos x − ρ−2

(
sin

(
ϕν

(
t

ρ

))
x + ρ2

(
ψν

(
t

ρ

)
− a0

)
where a0 is the mean value of the function ψν(τ). One can show by using the results of [5]
that for this system the limit constant p0 = −2 and the Poincaré–Arnold–Melnikov method
fails to predict the correct behavior of the system in the limit ρ → 0. More precisely the
Poincaré–Arnold–Melnikov method gives a correct order for the splitting, but one has to solve
an auxiliary nonperturbative problem to obtain an actual asymptotic. Following Gelfreich we
shall call this auxiliary problem a reference system. To investigate this situation we apply
the method proposed by Lazutkin [10] for the study of the standard map and developed by
Gelfreich [2]. The main idea of this method is continuation of invariant manifolds associated
with a hyperbolic periodic orbit into a complex domain to study their behaviour near the
singularity of a homoclinic trajectory of the averaged system, where the distance between
invariant manifolds is not exponentially small. One has to note that this method can be applied
to a time-periodic analytical perturbation of the intagrable system. That is why we consider

the case when the parameter ν 	= 1 and the HamiltonianG
(
x, y, t

ρ

)
is a time periodic one.

It is clear that the HamiltonianG(x, y, τ )
(
τ = t

ρ

)
is a periodic one in the variable τ with

period 4K(ν), where K(ν) is the first kind elliptic integral of module ν:

K(ν) =




∫ π/2

0

dθ√
1 − ν2 sin2 θ

ν < 1

∫ π/2

0

dθ√
1 − ν−2 sin2 θ

ν > 1.
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We change the time variable t → 2K(ν)
π
t . Then the Hamiltonian 2K(ν)

π
G
(
x, y, 2K(ν)

π
τ
)

becomes a function 2π-periodic in τ .
The method we apply has the following structure. On the first step of the method we

prove the existence of a hyperbolic periodic orbit of the system (1.9) by use of the standard
perturbation theory. The next stage is devoted to the invariant manifolds of the orbit. We
construct suitable parameterizations for these manifolds and consider their continuation to a
complex domain. In particular, we study the behaviour of the separatrices near a singularity
of the averaged system, where the splitting is not exponentially small. After that we prove
the existence of an integral of motion along the unstable separatrix in some complex segment,
which allows us to obtain an exponentially small asymptotic formula for the distance between
the invariant manifolds on the real axis. Finally we obtain an asymptotic expression for the
homoclinic invariant and prove the transversality of the homoclinic intersections.

2.1. Existence of a hyperbolic periodic orbit

The main ingredient of the method is a hyperbolic periodic orbit. So let us prove the existence
of such an orbit for our system.

It is well known (see, e.g. [8]) that if the HamiltonianG0(x, y),

G0(x, y) = K(ν)

π2

∫ 2π

0
G

(
x, y,

2K(ν)

π
τ

)
dτ

the average of G in time, has a hyperbolic fixed point then the Hamiltonian G has a hyperbolic
periodic orbit (xper, yper)(t) in a ρ-neighbourhood of this point.

It can be proved that

1

2π

∫ 2π

0
'ν

(
2K(ν)

π
τ

)
cos

(
φν

(
2K(ν)

π
τ

))
dτ = 1. (2.2)

We give a proof of the formula (2.2) in the appendix.

Taking into account (2.2) and that the function φν
(

2K(ν)
π
τ
)

is odd, we obtain that the

average HamiltonianG0 is of the form:

G0(x, y) = K(ν)

π
y2 − 2K(ν)

π
cos x. (2.3)

The function G0 is the Hamiltonian of the mathematical pendulum. It has a fixed
hyperbolic point x = π, y = 0 and an associated homoclinic trajectory

(xh, yh)(t) =
(

2 arctg

(
sinh

(
2K(ν)

π
t

))
, 2/cosh

(
2K(ν)

π
t

))
.

The trajectory (xh, yh)(t) is an analytic function in the strip |Im t| < π2

4K(ν) and has exactly

two singularities on the boundary at t = ±i π2

4K(ν) .
It is not difficult to check that the first component of the periodic orbit (xper , yper) can be

represented as a convergent power series

xper

(
t

ρ
; ρ, ν

)
=

∞∑
k=1

ρ2k

(2k)!
xper,k

(
t

ρ
; ν
)
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where xper,k
(
t
ρ
; ν
)

are 2π-periodic functions of their first argument. In particular, taking into

account the Fourier expansion of the elliptic functions [1]

sn

(
2K(k)

π
s, k

)
= π

kK(k)

∞∑
n=1

1

sinh
[(
n− 1

2

)
πK ′(k)/K(k)

] sin((2n− 1)s)

cn

(
2K(k)

π
s, k

)
= π

kK(k)

∞∑
n=1

1

cosh
[(
n− 1

2

)
πK ′(k)/K(k)

] cos((2n− 1)s) (2.4)

dn

(
2K(k)

π
s, k

)
= π

2K(k)
+

π

K(k)

∞∑
n=1

1

cosh[nπK ′(k)/K(k)]
cos(2ns)

whereK ′(k) = K(√1 − k2), we get for ν < 1

xper,k(τ ; ν) =
∞∑
l=1

rl(ν) sin((2l − 1)τ )

rl(ν) =
(

2K(ν)

π

)2 ((
1 + 4ν2 − 6ν2c0(ν)

)
gl(ν)− 6ν2fl(ν)

)

gl(ν) = 2

ν2(2l − 1)2cosh
[(
n− 1

2

)
πK ′(ν)

/
K(ν)

] fl(ν) =
∑
j 	=0

cj (ν)yl−j (ν)

yl(ν) =
{
gl l � 1
−g−l l � 0

cl(ν) = −1

4

∞∑
j=−∞

bj (ν)bl+1−j (ν) bl(ν) =
{
al l � 1
−a−l l � 0

al(ν) = 1

sinh
[(
n− 1

2

)
πK ′(ν)

/
K(ν)

]
and for ν > 1

xper,k(τ ; ν) =
∞∑
l=1

ql(ν) sin(2lτ ) ql(ν) =
(

2K(ν)

π

)2((
1 + 4ν2 − 6c0(ν)

)
dl(ν)− 6hl(ν)

)

dl(ν) = ν2

l2 cosh[lπK ′(k)/K(k)]
hl(ν) =

∑
j 	=0,j 	=l

cj (ν) zl−j (ν)zl(ν) =
{
dl l � 1
−d−l l � −1

.

2.2. Parametrization of invariant manifolds and their continuation into complex domains

The next step of the method deals with the study of the invariant manifolds associated with
the hyperbolic periodic orbit obtained at the previous stage. In this subsection we represent
the separatrices in a parametric form and consider their analytic continuation into the complex
phase space.

Note that the system (1.9) is reversible. The involution

(x, y, t)→ (2π − x, y,−t) (2.5)

changes the direction of the time, but does not change the equations of motion. This involution
maps a periodic trajectory in a periodic trajectory and a stable manifold in an unstable manifold.
The other reversing involution is defined by

(x, y, t)→ (−x, y,−t).
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These symmetries of the system (1.9) imply that if a point satisfies the initial condition x = π at
t = 0 and belongs to the stable (unstable) manifold, then it also belongs to the unstable (stable)
manifold. So it is a homoclinic point. The separatrix of the pendulum (xh, yh) intersects the
line x = π. Consequently, the invariant manifolds of the system (1.9) also intersect this line
at least for small ρ.

Let us consider the domains

D1 = {t1 ∈ C : Re t1 < −1} ∪
{
t1 ∈ C : −1 < Re t1 < 3, |Im t1| < π2

4K(ν)
− 1

}

which does not contain points close to the singularities of (xh, yh)(t)and

D2(ρ) =
{
t1 ∈ C : −1 < Re t1 < 5ρ, |Im t1| < π2

4K(ν)
− ρ

}

which is close to this singularity.
It follows from the general theory (see, e.g. [8]) that a periodic hyperbolic trajectory of a

dynamical system with one and a half degrees of freedom possesses two-dimensional stable
Ws and unstableWu invariant manifolds in the three-dimensional extended phase space. It is
convenient to representWu in the parametric form

x = xu(t1, t2; ρ, ν)
y = yu(t1, t2; ρ, ν)
t = ρt2.

Due to the symmetry of the system (1.9) we can define the parametrization ofWs by

x = xs(t1, t2; ρ, ν) = 2π − xu(−t1,−t2; ρ, ν)
y = ys(t1, t2; ρ, ν) = yu(−t1,−t2; ρ, ν) t = ρt2.

This enables us to study only the unstable separatrix.
The following lemma states the existence of a suitable parametrization of the unstable

separatrix of (xper, yper) and its properties.

Lemma 1. For any ν 	= 1 there is a ρ0(ν) > 0 such that for 0 < ρ < ρ0(ν) there exists a
function xu(t1, t2; ρ, ν), which satisfies the following conditions:

(1) this function is analytic in t1 for t1 ∈ D1 ∪D2(ρ) ∪ D̄2(ρ), and in t2 for |Im t2| < 1;
(2) it is 2π i-periodic in t1 and 2π-periodic in t2;
(3) for any t0 the function (x, y)(t) = (xu(t + t0), t/ρ; ρ, ν), yu(t + t0), t/ρ; ρ, ν)) is a

trajectory of the system (1.9) and

lim
t1→−∞ x

u(t1, t2; ρ, ν) = xper(t2);

(4) if t1 ∈ D1 ∪D2(ρ) ∪ D̄2(ρ) and |Im t2| < 1, then the following estimate holds

∣∣xu(t1, t2; ρ, ν)− xper(t2)− xh(t1)∣∣ < constρ2


1 +

1∣∣∣t1 − π2

4K(ν) i
∣∣∣2 +

1∣∣∣t1 + π2

4K(ν) i
∣∣∣2

 .

There is a unique parametrization satisfying (1)–(4) and the normalizing condition
xu(0, 0) = π .
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The proof of this lemma is rather straightforward. It is easy to check that the
parametrization of invariant manifolds has to satisfies the equation

Dtx = 2K(ν)

π
y

(2.6)

Dty = −2K(ν)

π
'ν

(
2K(ν)

π
t2

)
cos

(
x − φν

(
2K(ν)

π
t2

))
where Dt is the differential operator defined by the formula

Dt = ∂

∂t1
+

1

ρ

∂

∂t2
.

Substitute the expansion xu(t1, t2; ρ, ν) = xh(t1) + u(t1, t2; ρ, ν) into the equation (2.6).
It is not difficult to show that the residual will be small. Then one has to rewrite this equation
as an integral one in a suitable Banach space and use a fixed point theorem to see that the
reminder u(t1, t2; ρ, ν) is also small. We can take as a Banach space the space of functions
which are analytic in D1 × {|Im t2| < 1} (resp. D2(ρ)× {|Im t2| < 1}) and continuous in the
closure and supply it by the norm

||f || = sup
D1×{|Im t2 |<1}

|cosh(ωt1)f (t1, t2)|

where ω is the Floquet exponent of the variational equations near the hyperbolic periodic
trajectory xper .

Then the integral operator for the domainD1 × {|Im t2| < 1} is defined by the kernel

K(t, s) = sinh(2ωt) + 2ωt − sinh(2ωs) + 2ωs

4 cosh(ωt)cosh(ωs)
.

For the domain D2(ρ) × {|Im t2| < 1} one has to apply the method developed by Gelfreich,
which is based on the analysis of some difference equation (for more details see [5]).

2.3. Straightening the flow

The fact that the flow can be straightened in a neighbourhood of a segment of the unstable
manifold plays the key role in the method.

Let

D3(ρ) =
{
t1 ∈ C : |Re t1| � 5ρ, |Im t1| � π2

4K(ν)
− ρ

}
andM(r, ρ) be an r-neighbourhood of the corresponding segment of the unstable manifold in
the complexified (extended) phase space:

M(r, ρ) = {(x, y, t2 : |x − xu(t1, t2; ρ, ν)|2
+ |y − yu(t1, t2; ρ, ν)|2 < r2, t1 ∈ D3(ρ), |Im t2| < 1}.

We construct an analytical integral of the system (1.8) defined in the segment M(r, ρ) and
apply it to estimate the distance between separatrices.

Theorem 1. For any ν 	= 1 there exists ρ0(ν) > 0, such that for 0 < ρ < ρ0 the system
(1.9) can be prolonged analytically on the domain M(ρ5, ρ). Moreover, there is a canonical
change of variables, (x, y) → (T ,E), defined in M(ρ5, ρ) and 2πρ-periodic in time, such
that in the new variables the equations of motion take the form

dT

dt
= 1

dE

dt
= 0
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and

E
(
xu(t1, t2; ρ, ν), yu(t1, t2; ρ, ν), t2; ρ, ν

) = 0

T
(
xu(t1, t2; ρ, ν), yu(t1, t2; ρ, ν), t2; ρ, ν

) = t1.
The proof of this theorem is rather routine. So we only sketch it.

Let us consider the nonhomogeneous variational equations near the unstable manifold

Dtu = 2K(ν)

π
v + g1(t1, t2)

(2.7)

Dtv = 2K(ν)

π
'ν

(
2K(ν)

π
t2

)
cos

(
x − φν

(
2K(ν)

π
t2

))
u + g2(t1, t2)

where the function �g = (g1, g2) is a some known function.

Lemma 2. Let ν 	= 1 and µ ∈ [0, 1
11

]
. Then there exists a linear operator L in >1+µ ×>2+µ

such that �u = L�g is a solution of (2.7), where >µ is the space of functions in two complex
variables t1, t2, analytic inD3(ρ)×{|Im t2| < 1} and continuous in the closure of this domain,
and the norm in >µ is defined by

‖f ‖µ = sup
D(ρ)×{|Imt2 |<ρ}

|coshµ(t1)f (t1, t2)|.

Moreover, the following bound is valid

||L|| < const log2 ρ−1.

The proof of this lemma is similar to the proof of lemma 8 from [5] and it is based on
some facts related to families of first-order linear differential equations developed in [5, 6].

We seek a family of solutions of the Hamilton equations (1.9) in the form

x(t1, t2, E; ρ, ν) = xu(t1, t2; ρ, ν) + u(t1, t2, E; ρ, ν)
y(t1, t2, E; ρ, ν) = yu(t1, t2; ρ, ν) + v(t1, t2, E; ρ, ν).

Substituting these expressions into (2.6) and separating the linear part, we obtain the
system (2.7), where

g1(t1, t2) = 0

g2(t1, t2) = 2K(ν)

π

(
'ν

(
2K(ν)

π
t2

)
sin

(
xu(t1, t2)− φν

(
2K(ν)

π
t2

)
+ u(t1, t2)

)

−'ν
(

2K(ν)

π
t2

)
sin

(
xu(t1, t2)− φν

(
2K(ν)

π
t2

))

−'ν
(

2K(ν)

π
t2

)
cos

(
xu(t1, t2)− φν

(
2K(ν)

π
t2

))
u(t1, t2)

)
.

Then we can obtain the following equation

�w = E �w2 + L(�g( �w)) (2.8)

where �w = (u, v), �g = (g1, g2), L is the operator from lemma 2 and �w2(t1, t2) is the solution

of the homogenuous equation (2.7), linearly independent from �w1 =
(
∂xu

∂t1
,
∂yu

∂t1

)
.

It can be proved that the nonlinear operator in the right side of (2.7) is contracting in
sufficiently small ball. Indeed, if �w and �v belong to the ball in >1+µ × >2+µ centred at zero
and with the radius r = ρ5+5µ then

|| �g( �w)||1+µ,2+µ � constρ−2−µ|| �w||21+µ,2+µ

|| �g( �w)− �g(�v)||1+µ,2+µ � constρ−2−µ · r · || �w − �v||21+µ,2+µ.
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Taking into account lemma 2, we get

||L(�g( �w))||1+µ,2+µ � constρ−5−4µ|| �w||21+µ,2+µ

||L(�g( �w))− L(�g(�v))||1+µ,2+µ � constρ−2−µ · r · || �w − �v||21+µ,2+µ.

Let ρ be sufficiently small, then

||L(�g( �w))||1+µ,2+µ � r
2

||L(�g( �w))− L(�g(�v))||1+µ,2+µ � 1
2 || �w − �v||21+µ,2+µ.

Hence the nonlinear operator leaves the ball invariant and it is contracting provided by

|E| · || �w2||1+µ,2+µ <
r
2 .

Thus, we obtain the desired solution for |E| < E0 = ρ5+6µ.
Consequently, we construct the change of variables @̃t2

(t1, E)→ (x(t1, t2, E; ρ, ν), y(t1, t2, E; ρ, ν)).
This change is not canonical. But we can obtain the canonical change @t2 , if we take

@t2 = @̃t2 ◦ S−1
t2

, where

St2 : (t1, E)→ (t1, Ẽ)

Ẽ =
∫ E

0
J (t1, t2, E

′) dE′

J (t1, t2, E
′) = det

∥∥∥∥∥∥∥
∂x

∂t1

∂x

∂E
∂y

∂t1

∂y

∂E

∥∥∥∥∥∥∥ .
Under this substitution the stable manifold can be represented in the following form

E = C(t1 − ρt2; ρ, ν), T = t1 + µ(t1 − ρt2; ρ, ν)
where

C(t0; ρ, ν) = E
(
xs(t + t0, t), y

s(t + t0, t), t/ρ; ρ, ν
)

µ(t0; ρ, ν) = T
(
xs(t + t0, t), ys(t + t0, t), t/ρ; ρ, ν

) − (t + t0)

are analytic 2πρ-periodic functions. These functions are defined for |xs−xu|+ |ys−yu| < ρ5

what is valid for |Im t1| � π/2 − σρ logρ−1 with σ > 6 and |Re t1| < 5ρ.
Taking into account the definition of the change in theorem 1, it is not difficult to see that

∂E

∂x

(
xu(t1, t2; ρ, ν), yu(t1, t2; ρ, ν), t2; ρ, ν

) = −∂y
u

∂t1
(t1, t2, t2; ρ, ν)

∂E

∂y

(
xu(t1, t2; ρ, ν), yu(t1, t2; ρ, ν); ρ, ν

) = ∂xu

∂t1
(t1, t2; ρ, ν).

Expanding T and E in the Taylor series and using first-order approximation, we have

C(t0; ρ, ν) = det

∥∥∥∥∥∥
∂xu

∂t1
xs − xu

∂yu

∂t1
ys − yu

∥∥∥∥∥∥ (t + t0, t/ρ) +O2 (2.8)

where O2 denotes terms of the second orders in xs − xu and t.
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2.4. Reference system

It is not difficult to prove (see, e.g. [5]) that the distance xs − xu is less than any power of ρ
in the subset D̃ of D3(ρ)

D̃ =
{
t1 ∈ C : |Re t1| � 5ρ, |Im t1| � π2

4K(ν)
− c, for any c > 0

}
.

So, to detect the splitting we have to study the separatrices for Im t1 − π2

4K(ν) =
O(ρlog(ρ−1)), where the distance xs − xu is no exponentially small.

We look for a Hamiltonian system, which possesses invariant manifolds, not necessarily
associated with a periodic orbit, to approximate the separatrices of the system (1.9) near
the singularity of the homoclinic trajectory of the averaged system. Let us introduce near the
singularity of the separatrix of the averaged system new parameters and a new time by the
formulae

s1 = π

2K(ν)

t1 − π/2
ρ

s2 = t2 s = t

ρ
.

Besides we make the change

u = ix − log
π2

2ρ2K2(ν)
v = iρ

2K(ν)

π
y.

Although this change is not canonical the equations of motion in these variables have the
Hamiltonian form with

G̃ = v2

2
−'ν

(
2K(ν)

π
s

)
e
−iφν

(
2K(ν)
π
s
)
eu +

ρ4

4
'ν

(
2K(ν)

π
s

)
e

iφν
(

2K(ν)
π
s
)
e−u. (2.9)

Putting ρ = 0, we obtain the so-called ‘reference system’. This system approximates the
behaviour of the system (1.9) near the singularity of the homoclinic trajectory of the averaged
system. As it is shown in [2], systems with Hamiltonians

v2

2
− γ 2(1 + g(s)) · eu

where γ is a constant and g is a periodic function with zero mean value, possess
two invariant manifolds. Consequently, the reference system has two invariant
manifolds which can be parameterized [2] by the functions (u+(s1, s2; ν), v+(s1, s2; ν)) and
(u−(s1, s2; ν), v−(s1, s2; ν)). These manifolds provide good approximation for the manifolds
of the original system such that the following estimate is true

det

∥∥∥∥∥∥∥
∂xu

∂t1
xs − xu

∂yu

∂t1
ys − yu

∥∥∥∥∥∥∥ (t1, t2) = − π2

4K2(ν)ρ2
det

∥∥∥∥∥∥∥
∂u−
∂s1

u+ − u−
∂v−
∂t1

v+ − v−

∥∥∥∥∥∥∥ (s1, s2) (1 +O(ρ))

which is valid on the intersection of the line Im t1 = π/2 − σρ log(ρ−1) with the domain
D3(ρ) for any σ > 1.

Lemma 3. [2] For any ν 	= 0 there is a constant C1(ν) such that in the sector −π + c <
args1 < −c

det

∥∥∥∥∥∥∥
∂u−
∂s1

u+ − u−
∂v−
∂t1

v+ − v−

∥∥∥∥∥∥∥ (s1, s2) = C1(ν)exp(−i(s1 − s2)) +O(exp(−(2 − c′)|Im s1|))

for any c′ > 0, Im s1 < −A,A > 0. The constant in the estimate term depends on c, c′, A
and on the parameter ν.
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Then we have

C(t0; ρ, ν) = −2
π2

4K2(ν)ρ2
C1(ν) exp

(
π

2K(ν)

−π/2 − it0
ρ

)
(1 +O(ρ))

on the line Im t0 = π/2 − σρ log(ρ−1). Since the functionC is a real analytic one, we obtain
that

C(t0; ρ, ν) = −2
π2

4K2(ν)ρ2
|C1(ν)|exp

( −π2

4K(ν)ρ

)
cos

(
πt0

2K(ν)ρ
− argC1

)
(1 +O(ρ))

(2.10)

inside the strip |Im t0| � π/2 − σρ log(ρ−1).
Finally, we have to mention that since the function C(t0; ρ, ν) can be considered as a

measure of the distance between separatrices, its zeros correspond to homoclinic points.

2.5. Asymptotic formula for the homoclinic invariant

In this subsection we calculate the homoclinic invariant for the reduced system. One should
note that the homoclinic invariant was defined by (1.4) for autonomous Hamiltonian systems
with two degree of freedom while the system (1.9) is a system with one and a half degrees of
freedom. Nevertheless, it is well known that such a system can be rewritten as an autonomous
Hamiltonian system with two degree of freedom if we take the time variable as a new coordinate
and the Hamiltonian as a conjugate momentum. Moreover, it follows from the definition of
the tangent vectors �eu,s that in this case the homoclinic invariant of some homoclinic trajectory
ζh(t) = (xh(t), yh(t), t,G(xh(t), yh(t), t)) has the following form

ω(ζh) = �red(�eu(ζh(t ′), �es(ζh(t ′))
where�red = dy ∧ dx.

It is easy to show (see [6]) that the homoclinic invariant ωh can be represented in terms
of the functionC(t0; ρ, ν)

ωh(ρ, ν) = dC

dt0
(t0k; ρ, ν)

where t0k is a zero of the functionC.
Taking into account (2.10), we get

ωh(ρ, ν) = π3

4K3(ν)ρ3
|C1(ν)| exp

−π2

4K(ν)ρ
(1 +O(ρ)) . (2.11)

It will be shown in the following section the correction factor is nonzero. Hence the
homoclinic invariant (2.11) does not vanish and the separatrices of the hyperbolic periodic
orbit described in subsection 2.1 intersect transversally. It implies nonintegrability of the
reduced system (1.9). Moreover, since the full system (1.2) is a small perturbation of (1.9)
as the parameter δ tends to zero, one can get by using the standard perturbation theory that
there exists a positive constant δ0(ε, ν) such that the full system is nonintegrable too for any
δ < δ0(ε, ν). It follows from the exponential smallness of the homoclinic intersections for the
reduced system that the constant δ0(ε, ν) is exponentially small with respect to the parameter
1/

√
ε.

3. Numerical calculations

Note that the asymptotic expression for the homoclinic invariant includes the factorC1(ν). It
is a remarkable part of the formula. As it was mentioned above the Poincaré–Arnold–Melnikov



11026 A V Ivanov

method predicts the formula (2.11) up to this correction factor, which describes the splitting
of the complex invariant manifold associated with the reference system. A set of similar
constants appeared in the study of some other Hamiltonian systems [2] and area-preserving
maps [3]. Nevertheless, its nature is not completely clear. The rest of the paper is devoted to
calculation of the constantC1(ν).

For this purpose we use the following method proposed in [2]. Let us seek for the invariant
manifold of the reference system in the form

u(s1, s2; ν) = −log
s2

1

2
+
∑
n�2

an(s2; ν)
n!sn1

(3.1)

where the functions ak(s2; ν) are 2π-periodic with respect to s2. The parameters s1, s2 are
chosen in such a way that u(s + s0, s; ν) is a solution of the following equation

u′′ = 'ν

(
2K(ν)

π
s

)
e
−iφν

(
2K(ν)
π
s
)
eu. (3.2)

It is to be noted that this equation is equivalent to the equations of motion of the reference
system.

It follows from [2] that there are two invariant manifolds which have asymptotic expansion
(3.1) in the sectors c < args1 < 2π − c and −π + c < args1 < π − c, respectively.

Substituting (3.1) into (3.2) and collecting the terms with the same power of s−1
1 , we

obtain the equations on the functions ak

2 +
a′′

2 (s2; ν)
2!

= 2'ν

(
2K(ν)

π
s2

)
e
−iφν

(
2K(ν)
π
s2

)
− 2a′

2(s2; ν)
1!

+
a′′

3(s2; ν)
3!

= 0

(n− 1)an−2(s2; ν)
(n− 3)!

− 2a′
n−1(s2; ν)
(n− 2)!

+
a′′
n(s2; ν)
n!

(3.3)

= 2'µ

(
2K(ν)

π
s2

)
e
−iφµ

(
2K(ν)
π
s2

)
Yn−2(a1, . . . , an−2)(s2)

(n− 2)!
n � 4.

Here Yn are Bell polynomials defined by the recurrent formula

Y0 = 1

Yn(a1, . . . , a2) =
n−1∑
k=0

Ckn−1Yk(a1, . . . , ak)an−k n � 1.

It is to be noted that Y1 = a1 ≡ 0. We can apply the Fourier method to solve the equations
(3.3). Denoting the Fourier transformation of the function g = (

'νe−iφν − 1
)

by F [g], we
have

(n− 1)(n− 2)F [an−2](k)− 2ikF [an−1](k)− k2

n(n− 1)
F [an](k)

= 2(F [g + 1] ∗ F [Yn−2])(k) k ∈ Z k 	= 0,

(n2 − 3n)F [an−2](0) (3.4)

= 2(F [g] ∗ F [an−2])(0) + 2(F [g + 1] ∗
n−3∑
l=2

Cln−3(F [Yl] ∗ F [an−2−l]))(0).

where the sign ‘∗’ denotes the convolution.
Taking into account (2.4) and solving the system (3.4), we obtain the coefficients of the

expansion (3.1). Then we calculate

u(s1, s2; ν) = −log
s2

1

2
+
∑
n�2

an(s2; ν)
n!sn1
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(a) (b)

Figure 3. The dependence of ReC1 (a) and ImC1 (b) on ν, when ν < 1.

(a) (b)

Figure 4. The dependence of ReC1 (a) and ImC1 (b) on ν, when ν < 1 and ν is sufficiently small.

v(s1, s2; ν) = − 2

s1
+
∑
n�2

a′
n(s2; ν)
n!sn1

−
∑
n�2

an(s2; ν)
(n− 1)!sn+1

1
(3.5)

∂u

∂s1
(s1, s2; ν) = − 2

s1
−
∑
n�2

an(s2; ν)
(n− 1)!sn+1

1

∂v

∂s1
(s1, s2; ν) = 2

s2
1

−
∑
n�2

a′
n(s2; ν)

(n− 1)!sn+1
1

+
∑
n�2

(n + 1)an(s2; ν)
(n− 1)!sn+2

1

using the first eight terms of the series.
Taking these values as initial conditions, we integrate the equations of motion and the

variational equations

du

ds
= v

dv

ds
= 'ν

(
2K(ν)

π
s

)
e
−iφν

(
2K(ν)
π
s
)
eu

(3.6)
d ∂u
∂s1

ds
= ∂v

∂s1

d ∂v
∂s1

ds
= 'ν

(
2K(ν)

π
s

)
e−iφν

(
2K(ν)

π
s

)
eu
∂u

∂s1
.

Starting at the point (s1 − R, s2 − R) with sufficiently big constant R, we calculate the
point on the unstable manifold corresponding to the values of parameters (s1, s2) and the
tangent vector to the unstable manifold at this point. Starting at (s1 + R, s2 + R), we obtain
the point and the tangent vector corresponding to the stable manifold. We verified the values
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(a) (b)

Figure 5. The dependence of ReC1 (a) and ImC1 (b) on 1
ν

, when ν > 1.

of R from 200 to 1000 and found out that the result is independent on this choice. Then we
calculate the following approximation of C1(ν)

C̃1(s1, s2; ν) = exp(i(s1 − s2)) det

∥∥∥∥∥∥∥
∂u−
∂s1

u+ − u−
∂v−
∂t1

v+ − v−

∥∥∥∥∥∥∥ (s1, s2; ν). (3.7)

As it follows from lemma 3

C̃1(s1, s2; ν)−C1(ν) = O(exp(−(1 − c′)|Im s1|)).
We fixed s1 = −17i, s2 = 0, R = 600 and obtained the dependence of C̃1 on the parameter

ν. These results are presented in figures 3–5.

It is easy to see that the function g = g
(

2K(ν)
π
s; ν

)
is an analytic one with respect to ν at

zero for all s and g
(

2K(ν)
π
s; 0

)
≡ 0. Then the following lemma holds (see [2]).

Lemma 4. There is a constant ν0 > 0 such that for 0 < ν < ν0 the constant C1(ν) has the
following approximation

C1(ν) = −4π iν
dg1(ν)

dν
(0)(1 +O(ν))

where g1(ν) is the first coefficient of the Fourier series g(s; ν) = ∑∞
k=−∞ gk(ν)e

iks .

Using expansions (2.4), it is not difficult to obtain that

dg1(ν)

dν
(0) = −1.

Finally, we have

C1(ν) = 4π iν(1 +O(ν)).

It is to be noted that the numerical calculations are in a good agreement with this formula
(see figures 4(a) and (b)).

4. Conclusions

In the paper we prove the existence of exponentially small transversal homoclinic intersections
for the double mathematical pendulum in the limit when the ratio of pendulums masses close
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to zero and the ratio of pendulum lengths tend to infinity. A preliminary analysis of the system
shows that exponentially small homoclinic intersections may occur in other limit cases. For
example, when the parameter ν is small or big and the other two parameters are of the order of
O(1). But in these cases the situation is different, since the limit systems have no hyperbolic
periodic orbits or unstable equilibria. Nevertheless, after small modification the method used
in this paper can be applied to the described situation too. One should note the adaptability
of the method. It is clear enough that the first two steps of the method dealing with the
construction of a hyperbolic periodic orbit, its separatrices and justification of corresponding
asymptotics can be done for a general system. The coordinate system from step 3 is the central
and most complicated part of the method. For a general system one can get a straightened
flow theorem [5], but it is not enough for proving the asymptotic formulae. For several
other examples the complete proofs were obtained [2], [7], but as in the present paper those
proofs depend on the behaviour of the invariant manifolds and the solutions of the normal
variation equations near the singularity of the homoclinic trajectory of the averaged system.
The substitution used on step 4 is not general, but it is suitable to obtain a reference system for
Hamiltonians which are trigonometrical polinomials with respect to the space variables. The
symmetry of the double mathematical pendulum is useful, but it is not essential, since we can
construct all ingredients for the unstable as for the stable separatrix. Besides the method can
be modified to be applicable to non-Hamiltonian systems. Of course, the change of variables
in the straightened flow theorem is not canonical in this case. The proof can be done like
in [6], where the case of near identity maps was considered.

Appendix

First we consider the case ν > 1. Then the integral from the left-hand part of (2.2) is equal to
the following integral

I = 1

4K(ν)

∫ 4K(ν)

0
(6cn2(τ, ν−1) + 4ν2 − 5)(2cn2(τ, ν−1)− 1) dτ

= 3

K(ν)

∫ 4K(ν)

0
cn4(τ, ν−1) dτ +

2ν2 − 4

K(ν)

∫ 4K(ν)

0
cn2(τ, ν−1) dτ + 5 − 4ν2.

(A1)

It is well known (see, e.g. [1]) that the Jacobi functions satisfy the following conditions

cn2(τ, k) + sn2(τ, k) = 1
(A2)

dn2(τ, k) + k2sn2(τ, k) = 1

and

sn′(τ, k) = cn(τ, k) dn(τ, k)

cn′(τ, k) = −sn(τ, k) dn(τ, k) (A3)

dn′(τ, k) = −k2sn(τ, k)cn(τ, k).

Using (A2), we have

S1 =
∫ 4K(k)

0
cn2(τ, ν−1) dτ = 1

k2
E(4K(k))− k′2

k2
(A4)

where E(z) = ∫ z
0 dn2(τ, k) dτ, k′2 = 1 − k2.

We consider the following integral

S2 =
∫ 4K(k)

0
cn4(τ, ν−1) dτ.
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Combining the formulae (A2) and (A3), we get three different expressions for S2:

S2 = S1 − 1

k2

∫ 4K(k)

0
sn′2(τ, ν−1) dτ +

1

k2

∫ 4K(k)

0
cn′2(τ, ν−1) dτ (A5)

S2 = 1

k2

∫ 4K(k)

0
sn′2(τ, ν−1) dτ − k′2

k2
S1 (A6)

S2 = S1 +
k′2

k2

∫ 4K(k)

0
sn2(τ, ν−1) dτ − 1

k2

∫ 4K(k)

0
cn′2(τ, ν−1) dτ. (A7)

Summarizing (A5)–(A7) and taking into account that
∫ 4K(k)

0 sn2(τ, ν−1) dτ = 4K(k)−S1,
we obtain

S2 = 2

3

(
1 − k′2

k2

)
S1 +

4

3

k′2

k2
K(k). (A8)

It can be proved [1] that E(4K(k)) = 4E1(k), where E1(k) = ∫ π/2
0

√
1 − k2 sin2(τ ) dτ .

Taking this into account and substituting (A8) into (A1), we prove the formula (2.2).
In the case ν < 1 the integral from the left-hand part of (2.2) is equal to the following

integral

I = 1

4K(ν)

∫ 4K(ν)

0
(6dn2(τ, ν) + 4ν2 − 5)(2dn2(τ, ν)− 1) dτ. (A9)

Using (A2) we have that

I = 3ν4

K(ν)

∫ 4K(ν)

0
cn4(τ, ν) dτ +

2ν2 − 4ν4

K(ν)

∫ 4K(ν)

0
cn2(τ, ν)dτ + (1 − 2ν2)2. (A10)

Substituting (A4) and (A8) into (A10), we prove the formula (2.2) for ν < 1.
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